Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium

نویسندگان

  • Alexandra E. Briner
  • Gabriele Andrea Lugli
  • Christian Milani
  • Sabrina Duranti
  • Francesca Turroni
  • Miguel Gueimonde
  • Abelardo Margolles
  • Douwe van Sinderen
  • Marco Ventura
  • Rodolphe Barrangou
  • Christian U. Riedel
چکیده

CRISPR-Cas systems constitute adaptive immune systems for antiviral defense in bacteria. We investigated the occurrence and diversity of CRISPR-Cas systems in 48 Bifidobacterium genomes to gain insights into the diversity and co-evolution of CRISPR-Cas systems within the genus and investigate CRISPR spacer content. We identified the elements necessary for the successful targeting and inference of foreign DNA in select Type II CRISPR-Cas systems, including the tracrRNA and target PAM sequence. Bifidobacterium species have a very high frequency of CRISPR-Cas occurrence (77%, 37 of 48). We found that many Bifidobacterium species have unusually large and diverse CRISPR-Cas systems that contain spacer sequences showing homology to foreign genetic elements like prophages. A large number of CRISPR spacers in bifidobacteria show perfect homology to prophage sequences harbored in the chromosomes of other species of Bifidobacterium, including some spacers that self-target the chromosome. A correlation was observed between strains that lacked CRISPR-Cas systems and the number of times prophages in that chromosome were targeted by other CRISPR spacers. The presence of prophage-targeting CRISPR spacers and prophage content may shed light on evolutionary processes and strain divergence. Finally, elements of Type II CRISPR-Cas systems, including the tracrRNA and crRNAs, set the stage for the development of genome editing and genetic engineering tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum

Diverse CRISPR-Cas systems provide adaptive immunity in many bacteria and most archaea, via a DNA-encoded, RNA-mediated, nucleic-acid targeting mechanism. Over time, CRISPR loci expand via iterative uptake of invasive DNA sequences into the CRISPR array during the adaptation process. These genetic vaccination cards thus provide insights into the exposure of strains to phages and plasmids in spa...

متن کامل

CRISPR-Cas: the effective immune systems in the prokaryotes

Approximately all sequenced archaeal and half of eubacterial genomes have some sort of adaptive immune system, which enables them to target and cleave invading foreign genetic elements by an RNAi-like pathway. CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems consist of the CRISPR loci with multiple copies of a short repeat sequence separa...

متن کامل

The application and mechanism of CRISPR-Cas systems in the treatment of infectious diseases

Infectious diseases remain a global threat with many people annually contracting the epidemic diseases. Improved understanding of the pathogenesis of bacteria, viruses, fungi, and parasites, along with rapid diagnosis and treatment of human infections are essential to improving infectious diseases outcomes worldwide. In many genomic loci in bacteria and archea, termed Clustered Regularly Inters...

متن کامل

CRISPR Diversity and Microevolution in Clostridium difficile

Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced s...

متن کامل

Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.

Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015